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Abstract. This paper presents a similarity solution for strong blast waves of variable energy propagating in a dusty
gas. It is assumed that the equilibrium-flow condition is maintained and the variable energy input is supplied by
a driving piston or surface according to a time-dependent power law. Three cases have been investigated: Case I
corresponds to a decelerated piston, Case II to a piston of constant velocity, and Case III to a continuously accel-
erated piston starting from rest. Except in the case of constant front velocity, the similarity solution is valid for
adiabatic flow as long as the effect of the counter-pressure is neglected. The effects of a parameter characterizing
the various energy input of the blast wave on the similarity solution have been examined. The computations have
been performed for various values of mass concentration of the solid particles and for the ratio of density of
solid particles to the constant initial density of gas. Tables and graphs of numerical results are presented and
discussed.
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1. Introduction

Similarity solutions for a strong blast-wave generated by the instantaneous energy release from
a point source, a line source or a plane source in an ideal gas have been presented first
by Taylor [1] and Sedov [2, pp. 154–191]. A detailed analytical investigation of a cylindrical
blast wave with time-dependent energy input resulting from exploding wires was undertaken
by Freeman [3]. Examples of time-dependent energy deposition are laser-driven blast waves,
a chemical energy release occurring in a two-phase detonation, arc discharges and exploding
wire phenomena. Laser-driven shocks with variable energy deposited at the center have been
explored by Director and Dabora [4]. Dabora [5] found that the variable-energy case corre-
sponds to the piston problem. The self-similar case of variable-energy deposition in the flow
field for ideal gas was also treated by Guirgius et al. [6].

For a dusty gas with exponentially varying density, Vishwakarma [7] obtained a solution
for the flow field caused by strong shock-wave propagation. But this solution is confined
to a particular case in which the shock radius varies logarithmically in accordance with the
special time dependence of the shock velocity. An analytical solution for the case of a pla-
nar dusty-gas flow with constant shock velocity generated by a piston moving with constant
velocity was published by Miura and Glass [8] describing relaxation effects at small and mod-
erate Mach numbers. Their results reflected only the effects of the additional inertia of the
dust upon the wave propagation, since they assumed that the dust load has virtually a mass
fraction but no volume fraction.

In the present paper, we present a similarity solution for the flow field behind the shock
front and the inner expanding surface or piston moving with a velocity according to up =ctn,
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where c and n are constants. As many authors studying particle-free flow followed Freeman’s
proposal [3], we also assumed that the total energy input depends on time as E =P tβ , where
P and β are taken as constants. For the analysis, we treat the adiabatic flow as a mixture
of a gas and a pseudo-fluid at a velocity and temperature equilibrium with a constant ratio
of specific heats of the mixture. This assumption may be a good approximation for strong
shock waves, because the thickness of the relaxation zone behind the shock front, where the
interaction between gas and particles through viscous drag and heat-transfer produces con-
siderable deviations from velocity and temperature equilibrium, becomes very small for high
Mach numbers. Recently, Saito et al. [9] have found that the transition-zone length for 10 µm
in diameter spheres of grown glass (density 2500 kg/m3) for the frozen shock Mach num-
bers M = 1·2 and M = 3 are 18 and 6·5 cm, respectively. Therefore, when the shock position
is greater than 10 cm, the assumption of velocity and temperature equilibrium is quite justi-
fied for the case of strong blast waves, provided that the size of the particles is of the order
≤10µm [12]. Pai et al. [10], [11, pp. 561–564] and Higashino [12] have already analyzed the
problem of a strong blast wave under the assumption of velocity and temperature equilibrium
and obtained similarity solutions. Shock waves of weak or moderate strength in a dusty gas
were investigated by Rudinger and Chang [13], Marble [14], Higashino [15] and Geng and
Grönig [16]. The propagation of shock waves in dusty gas has been studied for the last four
decades to due their application to many engineering problems in industry and the environ-
ment. Blast-wave propagation in a dusty atmosphere and industrial explosions are important
examples of such applications [16].

In the present study, numerical results are obtained for three different cases of spheri-
cal symmetry depending on the piston-velocity exponent n or on its counterpart, i.e., on the
energy-input parameter β. Both the position of the shock wave and the driving surface (pis-
ton face) are functions of time. The increase of the total energy of the flow between the
shock front and the piston with time can be obtained by the pressure exerted on the mix-
ture by the inner expanding surface. In addition, we will analyze how the mass concentration
of the solid particles kp and the ratio of the density of solid particles to the initial density
of the gas affect the flow field behind the shock front. It is revealed that an increase in G

increases the shock strength (effective shock Mach number). On the other hand, an increase
in kp decreases the shock strength for lower values of G (e.g., G=1), whereas higher values of
G (e.g., G≥10) lead to an increase. Also, this most striking effect of the dust-loading parame-
ters will be discussed by means of physical parameters such as compressibility, additional iner-
tia, and energy integral of the mixture.

It should be emphasized that the terminology "shock wave" could also be used here in all
three cases to indicate the shock front, not the whole flow field, since a blast wave may be
generally defined as the flow field behind a moving shock wave [3]. Because of this, the flow
field in Case II corresponding to a piston of constant velocity is considered as a so-called
constant-velocity blast wave [17], [18].

2. Basic equations

2.1. Conservation equations

The non-steady, one-dimensional flow field in a mixture of gas and small solid particles is
a function of two independent variables, the time t and the space coordinate r. In order to
get some essential features of shock-wave propagation, it is assumed that the equilibrium-flow



Variable-energy blast waves generated by a piston moving in a dusty gas 323

condition is maintained in the flow field [10–12], [16]. If the stream cross-section A is inde-
pendent of time, the conservation equations governing the flow can be expressed as
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where u(r, t) is the velocity of the mixture, p(r, t) the pressure of the mixture, �(r, t) the den-
sity of the mixture and e(r, t) the internal energy of the mixture per unit mass. Further, the
geometry factor j is defined by

j = d log A

d log r
, (4)

where j =0 for plane symmetry, j =1 for line symmetry, j =2 for point symmetry.
Due to the condition of velocity and temperature equilibrium, the terms of drag force and

heat-transfer rate, which can be expressed via the drag coefficient and the Nusselt number,
do not appear in the right-hand sides of Equations (2) and (3), [15], [16]. These terms are,
of course, important for evaluating the extent of the relaxation zone behind the shock front
which is, however, beyond the scope of this paper.

The equation of state of the mixture subject to the equilibrium condition is

p =
(

1−kp

1−Z

)
�RiT , (5)

where kp = msp/m is the mass concentration of the solid particles (msp) in the mixture (m)
taken as a constant in the whole flow field, Z is the volume fraction of the solid particles,
Ri is the gas constant and T is the temperature. The relation between kp and Z is given by
Pai et al. [9] as

kp = Z�sp

�
, (6)

where Z = (Za/�a)�, while �sp is the species density of the solid particles and a subscript a

refers to the initial values of Z and �.

Za = Vsp

Vga +Vsp
= kp

G(1−kp)+kp

, (7)

where the volume of the mixture V is the sum of the volume of the perfect gas at the refer-
ence state Vga and the volume of the particles Vsp which remains constant. The parameter G

is defined as

G= �sp

�ga
, (8)

which is equal to the ratio of the density of the solid particles to the initial density of the
gas. Hence, the fundamental parameters of the Pai model are kp and G which describe the
effects of the dust loading. For the dust-loading parameter G, we have a range of G= 1 to
G→∞, i.e., Vsp →0.
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The internal energy of the mixture is related to the internal energies of the two species and
may be written as

e= cvmT = [kpcsp + (1−kp)cv

]
T , (9)

where csp is the specific heat of the solid particles, cv the specific heat of the gas at constant
volume and cvm is the specific heat of the mixture at constant volume. For equilibrium con-
ditions, the specific heat of the mixture at constant pressure is

cpm =kpcsp + (1−kp)cp, (10)

where cp is the specific heat of the gas at constant pressure. The ratio of the specific heats of
the mixture is then

� = cpm

cvm

= γ + δβsp

1+ δβsp
, (11)

where γ = cp/cv, βsp = csp/cv, δ =kp/(1−kp).
Eliminating the temperature from (5), (7) and (9), we may write the internal energy of the

mixture as follows:

e=
(

1−Z
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)
p

�
. (12)

The equilibrium sound speed of the mixture obtained by using the effective ratio of spe-
cific heats and effective gas constant RM = (1−kp)Ri is
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Thus, the ratio of the equilibrium sound speed of the mixture to that of a particle-free gas is
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The deviation of the behavior of a dusty gas from that of a perfect gas is indicated by
the compressibility defined as τ =1/�a2

M. The volume of the particles lowers the compressibil-
ity of the mixture, while the mass of the solid particles increases the total mass, and there-
fore may add to the inertia of the mixture. This can be demonstrated in two limiting cases
of the mixture at the initial state. For G=1, it follows from Equations (7), (5) that Za = kp,
�a =pa/RiT and τ = (1−kp)/�apa , i.e., the presence of the solid particles linearly lowers the
compressibility of the mixture in the initial state. In the other limiting case, i.e., for G→∞,
the volume of the solid particles Vsp tends to zero. According to (7), the volume fraction Za is
equal to zero. In this case, the compressibility τ =1/�apa is not effected by the dust loading.
The solid particles contribute only to increasing the mass and inertia of the mixture.

2.2. Boundary conditions and energy integral

At the shock front, we have the usual equations for conservation of mass, momentum, and
energy:

�aWn =�n(Wn −un), (15)

pa +�aW
2
n =pn +�n(Wn −un)

2, (16)
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ea + pa
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+ W 2
n

2
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�n

+ (Wn −un)
2

2
, (17)

where the subscript a refers to the values immediately in front of the shock, the subscript n

refers to the values immediately behind the shock and Wn is the front-propagation velocity.
At the inner boundary of a blast wave generated by a piston, we have the condition

up =
(

∂r

∂t

)
p

. (18)

The principle of global energy can be expressed in terms of the following integral relation:

∫ rn
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(
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2

)
�rj dr =
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0
ea�ar

j dr + P

nj

tβn . (19)

In this model, β is the so-called energy-input parameter and P is a proportionality constant
as mentioned above and nj is a geometrical factor defined as nj =2jπ + (1/2)(j −1)(j −2). If
the energy is supplied by a driving piston as in the present problem in which the flow is self-
similar, the constant P can be made dimensionless. Using the density of the medium at rest
and the constant c of the piston velocity, the non-dimensional constant is P/�ac

j+3, provided
(n+1)(j +3)=2+β, and its values may be found in Section 4 where the results are summa-
rized in Table 1. Since the work done by the piston can be described by the same power law,
we obtain for self-similar flow on the other hand P/�ac

j+3 =njpp/�aWn
2(j +1).

Basically, Freeman’s model is independent of whether the energy is absorbed at the shock
front [19] (laser radiation), or within the flow field (piston) as in the present problem.

2.3. Conservation equations and boundary conditions in non-dimensional form

The basic equations can be made dimensionless by transforming the independent variables for
space r and time t into new independent variables:

x ≡ r

rn
and ξ ≡ rn

Ro

or y ≡ a2
a

W 2
n

= 1
M2

. (20)

Here x and ξ are the so-called field coordinate and front coordinate, respectively. R0 is a
reference-front radius. R0 depends on the two most important parameters of the problem,
namely the energy-input parameter β and the pressure pa of the undisturbed medium, and
will be defined later on. The shock Mach number M = 1/

√
y refers to the effective speed of

sound aa =√�pa/(1−Za)�a for the undisturbed medium.
Introducing new dependent variables defined by

f ≡ u
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�aWn
2
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�a
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2
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and applying the operators
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where

λ≡ d log y

d log ξ
, (23)
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Table 1. Dimensionless energy integral J , velocity ratios up/Wn, up/un, dimensionless energy constant
P/(�ac

j+3) (Equation (58), (59)) and phase-plane variable Yp for spherical flow of a dusty gas with
variable energy input at the inner surface (piston) for different values of G and kp; γ =1·4.

β λ n G kp J up/Wn up/un P/(�ac
j+3) Yp

0·5 2 −05 0 0·316610 0·846698 1·016037 73·144758
1 0·2 0·240652 0·809481 1·173747 69·607602

0·4 0·164976 0·759329 1·417415 67·704750
10 0·1 0·328049 0·853400 1·018200 72·857974

0·2 0·339297 0·860071 1·022624 72·478482
0·4 0·358447 0·872323 1·042135 71·341011

100 0·2 0·352643 0·865917 1·006974 72·820681
0·4 0·396779 0·888135 1·001343 72·274918

3 0 0 0 0·248523 0·942924 1·131509 4·189805 0·222798
1 0·2 0·183026 0·886431 1·285325 4·202392 1·192997

0·4 0·121580 0·815541 1·522344 4·234906 4·817920
10 0·1 0·250657 0·944533 1·126933 4·189912 0·227024

0·2 0·251874 0·945439 1·124127 4·190103 0·240157
0·4 0·249555 0·943654 1·127352 4·190946 0·324320

100 0·2 0·261063 0·952270 1·107395 4·189423 0·181107
0·4 0·274155 0·961646 1·084224 4·189186 0·144564

8 −1 1 0 0·233431 0·957175 1·148610 0·456375
1 0·2 0·171288 0·897124 1·300830 0·463003

0·4 0·113553 0·822789 1·535872 0·473017
10 0·1 0·234209 0·957665 1·142601 0·456726

0·2 0·234086 0·957382 1·138327 0·457160
0·4 0·229382 0·952981 1·138494 0·458414

100 0·2 0·242432 0·964362 1·121456 0·456574
0·4 0·251439 0·971283 1·095089 0·456902

we can now write the governing equations in the following non-dimensional form:
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λy
∂f

∂y
+ (f −x)

∂f

∂x
− λ

2
f + 1

h

∂g

∂x
=0, (25)
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∂x
+ �g

1−Zah

(
∂f
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+ j

f

x

)
−λg =0. (26)

The decay coefficient λ is associated with the front velocity. For a similarity solution, λ must
be taken constant and should be suitably connected with the energy-input parameter β, or
the constant n.

According to Equation (16), a line x =xp must coincide with a particle path at the inner
boundary of a blast wave, i.e.,

f (xp)=up/Wn. (27)

At the shock front, the discontinuity conditions can be written as follows:

hn = 1
1−fn

, (28)
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gn =fn + 1−Za

�
y, (29)
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2
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�
y
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fn + 1−Za

� −1

)
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from which, by using Equations (12) and (21), we obtain conveniently
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� +1
(1−y), (31)
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, (32)
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)
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The velocity modulus ω, which is associated more directly with the propagation velocity of
the shock front, is defined as

ω= d log ξ

d log tn
= d log rn

d log tn
= Wntn

rn
. (34)

When λ �=0, the front trajectory in terms of y, ξ , and ω≡ t/t0 =aat/R0, can be obtained by
integrating (23) and (34) as follows:

ξ = ξ0y
1
λ , ω=ω0ξ0y

1
(ω0)λ , (35)

where ξ0 is an integration constant. The energy integral, (19), in terms of the non-dimensional
time ω and shock radius ξ , may now be put into the following form:

J = y(1−Za)
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ωβ

ξj+1
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(j +1)(� −1)

)
, (36)

where

≡ P/nj

paaa
βR0

j+1−β
. (37)

From this, by setting =1, we may now define an arbitrary reference radius as follows:

R0 =
(

P

njpaa
β
a

)1/(j+1−β)

, (j +1−β �=0). (38)

Accordingly, the non-dimensional energy integral becomes

J = y(1−Za)

�

(
ω

ξj+1
+ (1−Za)

(j +1)(� −1)

)
. (39)

When λ = 0, the counter-pressure can be taken into account because the partial derivatives
appearing in (24–26) vanish by multiplication with λ. As a result of a constant piston veloc-
ity, a linear law of motion is obtained in this special Case II:

aat

R0
=√

y
rn

R0
, (40)

where again the reference radius R0 can be fixed arbitrarily. We may find an alternative
expression of Equation (36) for Case II by using (40) instead of (35) and noting that β =j +1;
hence

J = y(1−Za)

�

(
Py(j+1)/2

njpaa
j+1
a

+ (1−Za)

(j +1)(� −1)

)
(y >0). (41)
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3. Similarity solution

In the Cases I and III of negligible counter-pressure, i.e., for y = 0, the transformed sys-
tem (24–26) including the corresponding boundary conditions permits a self-similar solution
if none of the dependent variables depend on y. Accordingly, it is essential that the energy-
deposition coefficient does not depend on y, except in Case II. However, for a self-similar
piston problem, the piston path must be proportional to the shock path in all three cases,
i.e., rp =αrn, so that the piston velocity is given by

u=up =αWn. (42)

Thus, substituting Equation (35) in Equation (39) under consideration of ω=n+1 as required
for similarity solutions, we obtain

J = lim
y→0

1−Za

�
(n+1)βξ

β−j−1
0 y

3
2 − β−1

(n+1)λ
− j

λ . (43)

Setting the exponent in Equation (43) equal to zero, we obtain to the following relations:

J = 1−Za

�
(n+1)βξ

β−j−1
0 , β �= j +1 (n �=0), (44)

λ= 2(j +1−β)

2+β
, (45)

where n+ 1 = 2/(λ+ 2), from which the exponent n is related to the energy-input parameter
β through

n= β − j −1
j +3

. (46)

Similar expressions for a pure gas were obtained earlier by Pitkin [18]. From the above
equation, we get

ξ0 =
(

�J

(1−Za)(n+1)β

) 1
β−j−1

, (47)

where J can then be written in terms of the dimensionless function of x as

J =
∫ 1

xp

(
1−Zah

� −1
g +h

f 2

2

)
xj dx. (48)

Thus, the trajectory of the front given by Equation (34) can now be expressed in the form

aat

R0
=
(

�J(n+1)2

1−Za

) 1
(n+1)(j+3) (

rn

R0

) 1
(n+1)

. (49)

From these equations, it becomes clear that n + 1 must be greater than zero, or n > −1, in
order to increase rn as t increases. The expanding piston, therefore, moves in conformity with
the shock front.

After setting y =0, the transformed equations of motion (22–24) can be written in matrix
notation as

AdU

dx
=B, (50)
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where U = (f, h, g)tr. The matrix A and the colum vector B can be read by inspection. The
system, (50), can be solved for the derivatives df/dx, dh/dx and dg/dx as follows:

df

dx
= �1

�
,

dh

dx
= �2

�
,

dg

dx
= �3

�
, (51)

where � is the determinant of the system which is given by

�= (f −x)

(
(f −x)2 − �g

(1−Zah)h

)
, (52)

and �1, �2 and �3 are the determinants obtained from � in the following form:

�1 = (f −x)

(
λ

2
f (f −x)+

[
−λ+ j

x

�f

1−Zah

]
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h

)
, (53)
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f −x

(
�1 + j

x
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)
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�3 = −g

f −x

(
��1

(1−Zah)
+
[
−λ+ j

x

�f

(1−Zah)

]
�

)
. (55)

The corresponding boundary conditions in the cases λ �=0 in which the counter-pressure is
neglected are

f (xp)=α, fn =gn = 2(1−Za)

� +1
, hn = � +1

� −1+2Za

. (56)

As already mentioned, when λ=0, the counter-pressure pa can also be considered so that in
Case II the boundary conditions (31–33) remain valid.

From (49), (38) and (46), one obtains for the shock-front velocity

Wn = (n+1)

[
1

(n+1)2

P

nj�aJ

]1/(j+3)

tn. (57)

Comparing this with Wn = (c/α)tn, we may express the non-dimensional energy constant
P ∗ =P/�ac

j+3 in terms of n, α and the energy integral J as follows:

P

�acj+3
= nj

(n+1)(j+1)

J

α(j+3)
. (58)

Admittedly, this relation applies to the Cases I and III. However, one may apply Equation
(58) to Case II, if y approaches zero, which corresponds to shock waves driven by a piston
at zero velocity of sound (or temperature). On the other hand, the use of Equation (41) in
Case II for y >0 leads to

P

�acj+3
= njJ

α(j+3)
− njga(1−Za)

(� −1)(j +1)αj+3
(n=0). (59)

The combination of (57), (58) and (13) with Z=Za yields finally for the effective shock Mach
number

(
Ma

Mga

)
t

=
(

1−Za

[(1−kp)�/γ ]1/2

)(
(1−kp)J0

(1−Za)J

) 1
(j+3) =

(
1−Za

[(1−kp)�/γ ]1/2

)
α0

α
, (60)

where Mga is the shock Mach number of the dust-free gas.
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4. Results and discussion

In order to integrate the set of nonlinear ordinary differential equations (39–41), we use the
Runge–Kutta fourth-order method with a variable step size. The integration has been carried
out for spherical blast waves, i.e., for j = 2, starting from the shock front (x = 1) and pro-
ceeding inwards until the piston is nearly surrounded. Furthermore, the parameters appearing
in Equation (11) were assumed to apply for γ = 1·4 and βsp = 1, respectively. The results are
given for various values of the mass fraction kp (mass concentration of the solid particles) at
constant volumetric parameter G (ratio of density of the solid particles to the initial density
of the gas) and vice versa.

The value of the constant λ occurring in the above equations gives rise to different cases
of possible solutions, which will be discussed in the following. In addition, we also illustrated
the flow behind the shock wave in the conventional phase plane by introducing the following
reduced variables:

F = f

x
, Y = �

x2(1−Z)

g

h
(Z ≤1). (61)

The physically meaningful self-similar solution extends from the shock point to the piston
path without crossing a limiting characteristic (acoustic line). Thus, the range of interest in
the (F ,Y )-plane is

2(1−Za)

� +1
<F <1, Y >0, (62)

in which the flow is subsonic, since

Y − (1−F)2 >0, or F ±
√

Y >1. (63)

From Equations (61), (28) and (29) at x = 1, the relation for the Hugoniot curve in the
phase plane is obtained for the Case II in the general form

Yn = �(1−Fn)
2

1−Fn −Za

(
Fn + 1−Za

�
y

)
, (64)

which for the Cases I and III where y =0 reduces to

Yn = �(1−Fn)
2Fn

1−Fn −Za

. (65)

4.1. Case I

The case of λ>0 (n>−1) corresponds to an expanding and decelerated piston. Since f =fp,
and the density approaches zero, h=hp =0, for fluid particles adjacent to the piston, the sin-
gular-image points in the phase plane must be on the line F =1 at Yp =∞ as is obvious from
Figures 1a, b, 4a, b and Table 1, where some essential flow parameters are summarized. Based
on the limiting value (df/dx)p = λ/� − j and (61), the slope of the integral curves in the
phase plane on the piston is then (dY/dF)F=1 =+∞. However, because of the strong-shock
assumptions, Case I may only be valid for early times when Wn 	aa

2.
To see the effect of the mass concentration kp and the mass-loading G of the dust on the

flow field, the radial variation of dimensionless velocity, pressure and density between shock
and piston has been plotted for kp =0, kp =0·1, kp =0·3, kp =0·4 and G=1, allowing a com-
parison with the dust-free case for kp = 0 in Figure 1a, and at G= 1, 10, 1000 and kp = 0·2
in Figure 1b. The pressure and the density increase in the radial direction while the velocity
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(a) (b)

Figure 1. Non-dimensional velocity, pressure and density distribution for Case I with time exponent n = −0·5:
(a) for various values of kp (mass concentration of the solid particles) and one value of G (ratio of density of the
solid particles to the initial density of the gas); (b) for various values of G and one value of kp .

decreases. This behavior, especially for the case of kp =0·4 and G=1, differs greatly from the
dust-free case.

The flow field in the phase plane is shown in Figures 4a and b. The Hugoniot curve is
drawn in accordance with Equation (65) as a thin line from point F = 0, Y = 0 up to the
shock point Fn, Yn which is denoted by a small circle. An interesting result is that the solution
curves may reach a zero slope at the shock and later these curves show a minimum between
shock front and piston face.

4.2. Case II

When λ = 0 (n = 0), it follows from the similarity solution that (df/dx)p = −j , (dg/dx)p =
(dh/dx)p = 0 and hp > 0. The location of these singular points in the phase plane must be
on the line F = 1 at Y = Yp which is not known until the problem has been solved. The
slope of the integral curves in the phase plane on the piston may be evaluated through lim-
iting processes, yielding: (dY/dF)F=1 =2Yp/(j +1). In this limiting case both the piston and
the shock front propagate and expand with constant velocities. Thereby the piston starts its
motion instantaneously from rest and the medium is adiabatically compressed in the region
between these two fronts.

It should be recalled that for λ= 0, since the counter-pressure can be taken into account
by Equations. (31), (32) and (33), y must not be a negligible quantity as in the Cases I and
III. However, as in these cases, we attain velocity and temperature equilibrium at a short
distance behind the shock front in comparison with the distance between shock and pis-
ton front, as long as we use solutions for y 
 1. The corresponding plots of dimensionless
velocity, pressure and density are presented in Figures 2a for kp = 0·1, kp = 0·3, kp =
0·4 and the volumetric parameter G = 1 at y = 0 and y = 0·01 (thin lines), respectively,
and in Figures 2b for G = 1, 10, 1000 and kp = 0·2 at y = 0 and y = 0·01 (thin lines),
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(a) (b)

Figure 2. Non-dimensional velocity, pressure and density distribution for n= 0 and 1/M2 = 0 or 1/M2 = 0·01 (thin
lines): (a) for various values of kp (mass concentration of the solid particles) and one value of G (ratio of density
of the solid particles to the initial density of the gas); (b) for various values of G and one value of kp .

respectively. In these cases pressure as well as density and velocity decrease in the radial
direction. The effect of the dust-loading parameters kp and G on the pressure and den-
sity profile is evident, except the effect on the velocity profile which can be seen from
Table 1.

4.3. Case III

When λ<0 (n>0), it follows from the similarity solution that (dh/dx)p =∞, and hp =1/Za

at the piston. The slope of the integral curves in the phase plane on the piston becomes
(dY/dF)F=1 = +∞ for kp > 0. In the dust-free case hp = ∞ and consequently Yp = 0 and
(dY/dF)F=1 =−∞. This case corresponds to an expanding and continuously accelerated pis-
ton starting from rest. Both piston path and shock path converge, in the course of which the
medium will be condensed, reaching a finite state (Z =1). Hence, the most significant feature
of the flow field in Case III is the existence of a limiting value for the density (hp =1/Za) as
shown in Figure 3.

Again, the corresponding plots depicted in Figure 3a and b distinctly show the effect of
the dust parameters kp and G on the radial profiles of the velocity, pressure and density. The
self-similar flow field, however, will be reached at later times when Wn 	aa

2.
Table 1 shows the ratios of the piston velocity up to the propagation velocity of the shock

Wn, on the one hand, and to the particle velocity of the mixture immediately behind the
shock un, on the other, in all three cases. In all these cases the dimensionless energy integral J

and the velocity ratio up/Wn decrease as the dust-mass fraction kp for G=1 increases, while
they slightly increase for values of G≥100. The velocity ratio of up/un acts just the opposite
way; it increases with increasing kp for G=1, while it decreases slightly for values of G≥100
(Figures 4–6).
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(a) (b)

Figure 3. Non-dimensional velocity, pressure and density distribution for Case III with time exponent n = 1:
(a) for various values of kp (mass concentration of the solid particles) and one value of G (ratio of density of the
solid particles to the initial density of the gas); (b) for various values of G and one value of kp .

(a) (b)

Figure 4. Solutions in the phase plane for Case I with time exponent n=−0·5: (a) for various values of kp (mass
concentration of the solid particles in the mixture) and constant values of G (ratio of density of the solid particles
to the initial density of the gas); (b) for various values of G and one value of kp .
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(a) (b)

Figure 5. Solutions in the phase plane for Case II with time exponent n = 0: (a) for various values of kp (mass
concentration of the solid particles in the mixture) and constant values of G (ratio of density of the solid particles
to the initial density of the gas); (b) for various values of G and one value of kp .

(a) (b)

Figure 6. Solutions in the phase plane for Case III with time exponent n= 1: (a) for various values of kp (mass
concentration of the solid particles in the mixture) and constant values of G (ratio of density of the solid particles
to the initial density of the gas); (b) for various values of G and one value of kp (ratio of density of the solid
particles to the initial density of the gas).
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Note that the initial sound speed aa of the mixture, defined by (13) where Z=Za , behaves
also inversely, it increases with increasing kp for G=1, while it decreases approximately line-
arly for values of G≥100.

When the energy-input parameter β approaches zero, or when n=−(j +1)/(j +3), the sys-
tem of equations (39–41) leads to the limiting case for instantaneous energy input in a dusty
gas.

The ratio of the effective shock Mach number Ma/Mga for a dusty gas to that for dust-
free gas is depicted in Figures 7. A comparison of the shock Mach numbers Wn/aa at the
same time, Equation (60), reveals that Wn/aa decreases with increasing kp for lower values of
G (e.g., G=1) and increases for higher values of G (e.g., G≥10). In other words, the shock
becomes weaker with increasing kp for lower values of G and stronger for higher values of
G. A plausible explanation is given by the decrease of the energy integral with increasing kp

for G=1 and by its increase with increasing G. Another simple explanation for this behavior
is given by the fact that an increase of shock velocity is accompanied by an increase of the
sound velocity for G=1 and, oppositely, a decrease of the shock velocity for G≥10 is more
than balanced by a decrease of the sound velocity, respectively. It should also be remembered
in this context what was said in the previous discussion about the deviation of the dusty gas
from the dust-free gas (on the end of Section 2.1) in which compressibility plays an overrid-
ing role towards a physical interpretation. The sound speed is related to the compressibility
of a gas. The presence of solid particles in the mixture decreases the compressibility and thus,
on the one hand, explains why the speed increases. But, on the other hand, the dust loading
may increase the inertia and thus decrease the speed of sound.
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Figure 7. Variation of the effective shock Mach number Ma with mass concentration of the solid particles in the
mixture kp for various values of G. Mga is the shock-Mach number of the dust-free (perfect) gas.
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5. Concluding remarks

A self-similar solution for blast waves of variable energy propagating into a dusty gas at
rest has been given here under the condition that the total energy of the flow between the
front and an inner expanding surface or piston is increasing with time according to a power
law. Three different cases were covered with respect to parameters describing the increase of
energy or the piston velocity: the first corresponds to a decelerated piston, the second to con-
stant piston velocity and the third to a continuously accelerated piston starting from rest.
Necessary conditions for the existence of similarity solutions for strong shock waves, as well
as for those of arbitrary strength, have been obtained. The results were compared in all three
cases with those of a dust-free gas. It was found that the dusty gas can have significant effects
on the variation of sound speed, shock velocity, shock Mach number (shock strength), den-
sity and pressure as well as on variation of the paths of shock and piston in the time-space
domain. The correspondence between the piston problem and the self-similar case of variable
energy deposition in the flow field could be expressed on the one hand by a non-dimensional
energy constant P ∗, and on the other through a relation between n and the energy-input
parameter β.
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